Parenchymal-stromal cell interaction in metabolic diseases

Yoshihiro Ogawa¹,³,*), Takayoshi Suganami²,⁴), Miyako Tanaka¹) and Michiko Itoh¹)

¹) Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
²) Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
³) CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
⁴) PREST, Japan Science and Technology Agency, Tokyo, Japan

Evidence has suggested that parenchymal-stromal cell interaction is implicated in the development of a variety of metabolic diseases. In obese adipose tissue, saturated fatty acids, which are released as a danger signal from hypertrophied adipocytes, stimulates a pathogen sensor TLR4 in the infiltrating macrophages, thus establishing a vicious cycle that augments adipose tissue inflammation. Histologically, macrophages aggregate to constitute crown-like structures (CLS), where they are thought to scavenge the residual lipid droplets of dead adipocytes. In obese adipose tissue, macrophage-inducible C-type lectin (Mincle) is induced in macrophages constituting CLS, the number of which is correlated with the extent of interstitial fibrosis. Mincle, when activated by an as-yet-unidentified danger signal released from dead or dying adipocytes, may play a key role in adipose tissue inflammation and fibrosis. Free fatty acids, when released from obese visceral fat depots, are transported in large quantities to the liver via the portal vein, where they are accumulated as ectopic fat, thus developing nonalcoholic steatohepatitis (NASH). There is a unique histological feature termed “hepatic CLS (hCLS)” in the NASH liver, where macrophages aggregate to surround dead hepatocytes with large lipid droplets. Notably, the number of hCLS is positively correlated with the extent of liver fibrosis, which suggests that hCLS serves as an origin of hepatic inflammation and fibrosis during the progression from simple steatosis to NASH. We postulate that CLS/hCLS represent the unique microenvironment for parenchymal-stromal cell interaction in metabolic diseases.

Rec.6/24/2015, Acc.7/2/2015, pp167-171

*Correspondence should be addressed to:
Yoshihiro Ogawa MD, PhD, Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Bunkyo-ku Yushima, Tokyo 113-8510, Japan. Phone: +81-3-5803-5966, Fax: +81-3-5803-0261, E-mail: ogawa.mem@tmd.ac.jp

Key words crown-like structures (CLS), macrophage, macrophage-inducible C-type lectin (Mincle), nonalcoholic steatohepatitis (NASH), obesity
Introduction

Inflammation, particularly, one which persists for a long time or chronic inflammation, plays a critical role in the pathogenesis of multiple chronic diseases such as cardiovascular and metabolic diseases, autoimmune diseases, some of neurodegenerative disorders, and even every stage of cancers; carcinogenesis, invasion, and metastasis\(^1\). Evidence has accumulated suggesting that chronic inflammation represents a major common molecular basis underlying a variety of non-communicable diseases\(^1\).

Inflammation is an adaptive response to either exogenous or endogenous stimuli. It is classified into acute and chronic inflammation based upon the duration of inflammatory responses\(^2\). The “acute inflammation” is a short-term and self-limited process characterized by classic signs and symptoms of inflammation; rubor, calor, tumor, and dolor. This may be a physiological adaptive response to tissue injury and is mostly resolved by an active termination program; damaged and/or stressed parenchymal cells are being dead and removed with the aid of stromal cells such as lymphocytes and macrophages, which are thereafter replaced by healthy parenchymal cells through the process of regeneration. However, under pathological conditions, inflammation may persist inappropriately in response to tissue stress or malfunction in a given parenchymal organ, thereby leading to tissue remodeling and irreversible loss of organ function. The molecular mechanism underlying the progression from acute to chronic inflammation is ill-defined, and whether they are totally differentiated is not well established.

Metabolic diseases may be viewed as a state of chronic low-grade inflammation. For instance, obese adipose tissue is characterized by adipocyte hypertrophy, increased angiogenesis and infiltration of immune cells such as macrophages, tissue fibrosis, and increased production of proinflammatory adipokines, which may be referred to as “adipose tissue remodeling”\(^3\). This review article is to describe the molecular mechanisms underlying the interaction between parenchymal and stromal cells in metabolic tissue; the adipose tissue and liver, and to discuss their pathophysiological and therapeutic implications.

Parenchymal-stromal Cell Interaction in the Adipose Tissue

During the progression of obesity, hypertrophied adipocytes secrete a number of chemokines such as monocyte chemoattractant protein-1 (MCP-1) to stimulate the recruit-
Parenchymal-stromal Cell Interaction in the Liver

Nonalcoholic fatty liver disease (NAFLD) is defined as increased accumulation of lipids in the liver without a history of excess alcohol consumption. It is considered the hepatic manifestation of the metabolic syndrome. Nonalcoholic steatohepatitis (NASH), a progressive form of NAFLD, are closely associated with the development to liver cirrhosis (LC) and hepatocellular carcinoma (HCC). As the pathogenesis of NASH, the well-known “two-hit hypothesis” has been proposed for years, although the detailed mechanism from simple steatosis to NASH is currently unclear. It is partly because of no appropriate animal models that reflect the liver condition of human NASH.

Melanocortin-4 receptor (MC4R), a seven-transmembrane G protein-coupled receptor that is expressed in the hypothalamic nuclei implicated in the regulation of food intake and body weight. We recently reported that MC4R-deficient mice (MC4R-KO mice), when fed HFD, is a novel rodent model of NASH; they develop diet-induced obesity and hepatic steatosis, liver fibrosis, and HCC. Histological analysis revealed hepatocyte ballooning degeneration, infiltration of inflammatory cells, and pericellular fibrosis in MC4R-KO mice fed HFD, all of which are a hallmark of human NASH. Because MC4R expression is relatively restricted to the brain, especially the hypothalamic nuclei, it is conceivable that the brain participates in the development of NASH. Further studies are required to investigate the role of central nervous system in the development of NASH.

MC4R-KO mice show a number of CLSs in the adipose tissue. Interestingly, there are bizarre histological features, which we can call “hepatic crown-like structures (hCLS)”; where macrophages aggregate to surround hepatocytes with large lipid droplets. Although there is no significant difference in the number of macrophages between the genotypes, the number of hCLS is increased in MC4R-KO mice during the progression from simple steatosis to NASH. Accordingly, the number of hCLS is positively correlated with the extent of fibrosis. Importantly, hCLS occurs in patients with NASH or even in those with simple steatosis. Immunofluorescent and electron microscopic analysis revealed that hCLS is composed of CD11c-positive macrophages and dead hepatocytes with large lipid droplets, which is closely associated with activated fibroblasts and collagen deposition. Indeed, eicosapentaenoic acid, a clinically available ω3-polyunsaturated fatty acid, reduces the number of hCLS in parallel with the improvement of liver fibrosis in MC4R-KO mice. These observations suggest the pathophysiological role of hCLS in the development of liver fibrosis.

Increased flow of free fatty acids from visceral adipose tissue to the liver as a result of adipose tissue inflammation and fibrosis induces simple steatosis. In fatty liver, parenchymal hepatocytes which are overloaded with lipid and thus being dead are surrounded by macrophages to form hCLS. In the NASH liver, macrophages can interact with and engulf dead hepatocytes within hCLS, thereafter activating fibrogenic cells to stimulate fibrosis as an adaptive repair response to tissue injury. It is, therefore, likely that hCLS serves as an origin of hepatic inflammation and fibrosis during the progression from simple steatosis to NASH.
Conclusion

In obese adipose tissue and NASH liver, parenchymal cells; adipocytes and hepatocytes, when are overloaded with lipids and thus being dead or dying, may report their dysfunctional state via multiple danger signals or dying messages to the adjacent stromal cells (Fig. 1). It is conceivable that CLS/hCLS serves as an origin of tissue inflammation and fibrosis in response to tissue injury. Mincle is essential for the TDM induced-granuloma formation in the lung\(^ {19}\). Given the structural and functional similarities between CLS and tuberculous granuloma, it is interesting to speculate that Mincle is involved in the development of tissue fibrosis and, more broadly, tissue remodeling in metabolic diseases. Considering the role Mincle in adipose tissue remodeling, it is also interesting to speculate that Mincle also plays a role in hepatic inflammation and fibrosis in hCLS. Further studies are required to understand the pathophysiologic role of Mincle during the progression from simple steatosis to NASH. By analogy with mycobacterial infection, unhealthy lipids such as saturated fatty acids may act as an infectious agent to disseminate CLS and to propagate the CLS-mediated chronic inflammation and tissue damage from the adipose tissue to multiple metabolic organs. We, therefore, postulate that CLS/hCLS provides the unique microenvironment where dead or dying parenchymal cells and stromal cells crosstalk in close proximity in vivo. This discussion highlights the role of parenchymal-stromal cell interaction in metabolic diseases.

Acknowledgments

The authors thank the members of the Ogawa laboratory for helpful discussions.

Source of funding

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Ministry of Health, Labour and Welfare of Japan.

Conflict of interests

Mochida Pharmaceutical Co., Ltd. funded a part of this study and provided highly purified EPA ethyl ester.

References

4) Lumeng CL, Bodzin JL, Saltiel AR: Obesity induces

